根据现在工业界的大数据就业情况来说(对于一般同学而非牛人),统计从事大数据来说优势小。对一般数据分析甚至建模有一定优势。
我这篇回答面向的是大部分水平还可以的统计本科生,他们也努力学习了专业课,编程基础一般或几乎没有,但是没有看额外的公开课或书籍,大部分无法通过大数据的面试。
硕士或者博士自学了数据挖掘,自学各种公开课的请忽略我的答案,因为任何领域你自学很深入了都可以做。干货在分割线以下。
数据 ≠ 大数据!
数据挖掘 ≠ 大数据!
大数据也用统计的各种模型建模,但是代码比在学校学习的复杂,门槛高!!职位少,不自学额外的肯定过不了大数据的面试,尤其是本科生,这个是实际情况。
一味的鼓吹大数据,然后让一堆学统计的本科生找不到大数据相关的工作我认为很不负责任。一般数据分析或者一般数据量的建模也很好。等工作几年有实际产品与工业界经验你再转大数据分析或者建模也很好。
经同学提醒,我最开始没注意提问人要读研或读博。对于读研或读博的同学,好好打好数理基础,持续深入学习的话统计学肯定是有优势的。我回答初衷是描述就业境况,如果本科同学能了解到就业情况,提前准备那是最好的。
赞同知友所说学校不能教给我们所需的所有知识。所以对于有自学能力,也学对方向的人我觉得专业完全限制不了他们的发挥,他们只要努力持续学肯定能有收获。
我读了4年211+ 2年美研总计6年统计学专业。现在在洛杉矶转行做大数据工程师(说转行是因为现在所做和统计学的东西几乎毫无关联,